Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Environ Res Public Health ; 19(20)2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-2071434

ABSTRACT

The COVID-19 pandemic has underlined the importance of disinfectants as tools to prevent and fight against coronavirus spreading. An ideal disinfectant and sanitizer must be nontoxic to surface contact, noncorrosive, effective, and relatively inexpensive as it is hypochlorous acid (HOCl). The present work intended to evaluate, on different surfaces, the bactericidal and virucidal effectiveness of nebulized HOCl and test its safety usage in 2D and 3D skin and lung models. Our data showed that HOCl at the dose of 300 ppm did not affect cellular and tissue viability, not their morphology. The HOCl bactericidal properties varies with the surface analyzed: 69% for semi-porous, 96-99.9% for flat and porous. This discrepancy was not noticed for the virucidal properties. Overall, this study showed that nebulized HOCl can prevent virus and bacteria growth without affecting lung and skin tissues, making this compound a perfect candidate to sanitize indoor environments.


Subject(s)
COVID-19 , Disinfectants , Viruses , Humans , Hypochlorous Acid/chemistry , COVID-19/prevention & control , Pandemics/prevention & control
3.
Front Immunol ; 12: 693054, 2021.
Article in English | MEDLINE | ID: covidwho-1334935

ABSTRACT

Advanced age is associated with severe symptoms and death upon SARS-CoV-2 infection. Virus-specific CD8+ T-cell responses have shown to be protective toward critical COVID-19 manifestations, suggesting that suboptimal cellular immunity may contribute to the age-pattern of the disease. The induction of a CD8+ T-cell response against an emerging pathogen like SARS-CoV-2 relies on the activation of naive T cells. To investigate whether the primary CD8+ T-cell response against this virus is defective in advanced age, we used an in vitro approach to prime SARS-CoV-2-specific naive CD8+ T cells from healthy, unexposed donors of different age groups. Compared to younger adults, older individuals display a poor SARS-CoV-2-specific T-cell priming capacity in terms of both magnitude and quality of the response. In addition, older subjects recognize a lower number of epitopes. Our results implicate that immune aging is associated with altered primary SARS-CoV-2-specific CD8+ T-cell responses.


Subject(s)
Aging/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Antigens, Viral/immunology , Cells, Cultured , Enzyme-Linked Immunospot Assay , Epitopes, T-Lymphocyte/immunology , Gene Expression Regulation , Healthy Volunteers , Humans , Interferon-gamma/genetics , Interferon-gamma/metabolism , Lymphocyte Activation , Middle Aged , Peptides/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL